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SYMBOLS

Cf local skin-friction coefficient

e turbulent mixing energy (two-equation model)

f ratio of rates of strain in distorted homogeneous flows (eq. (53))

h mas3-av_raged static enthalpy

h" mass-averaged fluctuating static enthalpy

K distortion parameter (eq. (63))

ku T
k+ surface roughness parameter,

V

length scale (eq. (15))

p mean pressure

P fluctuating pressure

Pe productiop term in turbulence kinetic energy equation (eq. (i))

qj mass-averaged turbulent heat-flux vector (eqs. (9))

qjT mass-averaged total heat flux vector, molecular plus turbulent
mechanisms (eq. (7))

Re scaling Reynolds number for _* (eqs. (16) or (39))

Rw scaling Reynolds number for _ (eqs. (16) or (39))

ReT turbulence Reynolds number (eq. (17))

Sij mean rate of strain ten3or (eq. (8))

absolute magnitude of mean rate of strain, ,/S[jSij

t time

ui mass-averaged velocity vector

_t

Tl 4

U_

mass-averaged fluctuating velocity vector

friction velocity, _

x i space coordinate vector, i = i, 2, or 3

vw surface blowing rate

iii
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W
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6**
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V
W

normalized surface blowing rate, --
U

I

closure coefficient in Saffman's turbulence kinetic energy equation

closure coefficient in dissipation terms of pseudovorticity or specific

dissipation rate equation (eq. (14) or (37))

closure coefficient in turbulent mixing-energy equation (eq. (13))

closure coefficient in decay term of heat-flux equation (eq. (36))

closure coefficient in production term of specific dissipation rate

equation (eq. (14) or (37))

closure coefficient in eddy diffusivity expression (eq. (12))

Kronecker delta

eddy diffusivity

axial rate of strain in homogeneous flow

turbulence kinetic energy ratio factor at boundary-layer edge,

e
e

u
e

j

i

7

Karman constant

rate of shearing strain in homogeneous flow

low turbulent Reynolds number factor for closure coefficient in Reynolds

stress redistribution term (eqs. (16) or (39))

closure coefficient in redistribution term of Reynolds-stress equation

(eq. (35))

molecular viscosity

kinematic viscosity

mean density

ins. lntaneous aensity

inverse of the effective Prandtl number for the turbulent diffusion of

specific dissipation rate

inverse of the effective Prandtl number for the turbulent diffusion of

Reynolds stress or kinetic ei_ergy

Iv



_. °

lj

lj

_. °

lj

inverse of the effective Prandtl number for the turbulent diffusion of
heat flux

mass averaged specific Reynolds stress tensor (eqs. (9))

mass averaged specific total stress tensor, molecular plus turbulent

transport (eq. (6))

correlation of pressure and rate of strain fluctuations

,i damping coefficient for _*

ij
mean vorticity tensor

pseudovorticity or specific dissipation rate

Subscripts

w surface value

o initial value

e boundary-layer edge value

Superscripts

+ "law of the wall" coordinate

u
+ u +

u ur ' Y = Y v
w

v



PROGRESS IN TURBULENCE MODELING FOR COMPLEX FLOW FIELDS

INCLUDING EFFECTS OF COMPRESSIBILITY

David C. Wilcox* and Morris W. Rubesin #

SUMMARY

Two second-order-closure turbulence models have been devised that are

suitable for predicting properties of complex turbulent flow fields in both

incompressible and compressible fluids. One model is of the "two-equatlon"

variety in which closure is accomplished by introducing an eddy viscosity which

depends on both a turbulent mixing energy and a dissipation rate per unit

energy, that is, a specific dissipation rate. The other model is a "Reynolds

stress equation" (RSE) formulation in which all components of the Reynolds

stress tensor and turbul_nt heat-flux vector are computed directly and are

_caled by the specific dissipation rate. Computations based on these models

are compared with measurements for the following flow fields: (a) low speed,

high Reynolds number channel flows with plane strain or uniform shear;

(b) equilibrium turbulent boundary layers with and without pressure gradients

or effects of compressibility; and (c) flow over a convex surface with and

without a pressure gradient. The RSE model-computed flow properties generally

differ by less than 10% from the measurements for all of the applications.

Discrepancie_ between two-equatlon model predictions ana the measured flow

properties are much larger only for homogeneous flows with _uddenly applied

strain, lending further credence to the notion that a Reynolds stress model

offers little advantage over a two-equation model for two-dlmensional boundary

layers that are close tc equilibrium.

INTRODUCTION

For the past several years, Wilcox and hls colleagues have made signifi-

cant progress in developing second-order closure models suitable for computing

complex turbulent flows, including the effects of compressibility (refs. i

and 2). While early emphEsls was focused on two-dimensional attached flows

with curved streamlines, care was taken to ensure that, at least in principle,

the models could be applied in a straightforward way to both separated and

three-dimenslonal flows. Although most of the modeling effort was devoted to

the _evelopment of a "two-equation" eddy viscosity model of turbulence, this

work was guided to some extent by the parallel development of a model for the

Reynolds stres3 tensor equation. These models were significan_ improvements

of the two-equation _odel originally devised by Saffman (ref. 3) and Wilcox

(refs. 4 to 6). Most importantly, the model presented by Wilcox and Traci

*President, DCW Industries, Inc., Studio City, CA 91604

#St. Staff Scientist, Ames Research Center, NASA, Moffett Field, CA 94035



(ref. 6) is as accurate as mixing length theory for equilibrium boundary
layers I and has a muchwider range of applicability, for example, reference 7.

Throughout the development of these models, the production terms for the
turbulence kinetic energy were maintained as in Saffman's original work
(ref. 3) where the production of turbulence kinetic energy was set proportional
to the kinetic energy times the absolute value of the rate of strain. Although
this approach led to a mathematically elegant homogeneousequation for the tur-
bulence kinetic energy, it introduced modeling for terms that can be derived
directly. For attached boundary layers, Saffman's additional modeling intro-
duced no significant differences. Whenmore general flow fields were consid-
ered, the Saffman-type production terms were demonstrated to contain the poten-
tial for introducing errors. For example, if the homogeneousturbulence field
along the centerllne of an expanding supersonic nozzle is considered, the
actual production of kinetic energy is given by

,, ,, _ui
Pe = -(Ouiuj) _x. (i)

J

For this flow field, only normal stresses exist, and thus the stresses that

appear in equation (i) are positive. As the corresponding rates of strain are

also positive, equation (i) then indicates a decrease in the kinetic energy

along the centerline of the nozzle. For this same flow field, the Saffma_L pro-
duction term

Pe = a*pSe (2)

indicates an increase in kinetic energy since the kinetic energy e and the

absolute magnitude of the rate of strain tensor S are both positive. The

rather gross discrepancy for this example (and for others as well) suggested

revision of the production terms in the Wilcox-Traci model. Thus, one objec-

tive of the current work was to reintroduce the unmodeled production terms

into the model equation for the kinetic energy.

During the development of the Wilcox-Traci model, several advances in tur-

bulence modeling were introduced that are not common, as a group, to most of

the models fcund in the literature. First, the effects of compressibility

have been accounted for through the use of mass-weighted averaged dependent

variables and some hypotheses regarding terms in which the compressibility

effects are isolated. Second, several modeling coefficients have been made to

depend on the turbulence Reynolds number and this, together with the introduc-

tion of molecular diffusivity as a parallel transport mechanism to the turbu-

lence, has permitted integration of the transport and modeling equations

directly to surfaces bordering the flow fields. Thus, the relatively common

use of a "law of the wall" to define the boundary conditions near surfaces was

avoided. Finally, a Reynolds stress tensor model for compressible and low

IA boundary layer is defined as being in equilibrium if its local skin

friction, momentum and displacement thicknesses are consistent with the

Ludweig-Tillman formula (ref. 8).



Reynolds numberflows wasdeveloped in parallel with the two-equation model to
guide the developmentand assess the limitations of the latter. A second
objective of this paper, then, is to modify the production terms in the Reyn-
olds stress tensor model and to comparethe results of compu_atlonsbased on
this model with computations from the two-equation model for a series of homo-
geneousand boundary-layer flows that are well documentedwith measurementsof
the turbulence quantities.

FORMULATIONOFMODELEQUATIONS

MeanFlow Equations and BoundaryConditions

For a compressible fluid in turbulent flow, the conservation equations for
mass, momentum,and energy are writLen in terms of the mass-weighted average
quantities as follows:

____P+
_t _q? (pui) --0 (3)

1

_ _ + _ (OTIj) (4)
(Pui)+ (P"jui)--_ i

_ _P _ u_ _p + T _ul 3 T)
_--_(ph) + _ (pujh) = _t _xj Orij _xj _xj (Pqj (5)

Here, the symbols TTj and q.T denote the specific mass-weighted average total
shear stress and heat flux t_at include the contributions cf both the molecular

and turbulent transport. These quantities are defined as

TTj = 2_ (Sij 1 8Uk3 _xk 6ij) + Tij (6)

and

T _ _h

q3 = Pr L ?xj + qJ (7)

These "specific" quantities are the actual total shear stress and heat flux

divided by the local mean density. The mean rate of strain tensor appearing

in equation (6) is given by

sij --2 \_xj _ _xi! (8)

Finally, TIj and qj are the mass-weighted averaged Reynolds stress tensor and
heat flux vector d_fined by



Tij -

qJ = 0

<Tu"u'f>plj 1
(9)

where p is the instantaneous density, < ) denotes the time average of the

enclosed quantity and the superscript " represents the fluctuating part in a

mass-weighted average formulation. The boundary conditions for equations (3)

to (5) at surfaces (x 2 = O) are

u I = 0

u 2 = 0 or Vw(X 1)

_h
h = hw(x I) or

$x2

(i0)

All flow variables approach free-stream flow conditions in general flow field

com_utations. For the special case of two-dimensional boundary layers, the

boundary conditions at the boundary-layer edge are at x 2 = _(x I)

%

ul = Ue(xl)

!h = he(x I)

(ii)

In this section, two models are developed for evaluating the Tij and

qj defined by equations (9). The first is of the "two-equation" type employ-
Ing an eddy diffusivity that depends algeb_aically on the dependent variables

of the two modeling equations. This model is a direct extension of the model

of reference 6 through the use of unmodeled production terms and a constitu-

tive relationship that permits nonaligned stress and strain. As with all eddy

diffusivity models, sudden changes in the rates of strain result in immediate

changes in the Reynolds stresses and heat fluxes, although the eddy diffusiv-

ity itself has not had time to respond. To remedy this situation, Saffman

(ref. 9) developed a method for a two-equation model that permits stress and

strain to develop at different rates. Although this method showed promise, it

complicated the modeling process by introducing an additional lag equation.

The authors felt that the use of Reynolds stress modeling equations could

achieve these same objectives regarding the relaxation of equilibrium between

stress and strain in a more direct fashion. The Reynolds stress approach

eliminated the need for an assumed form of constitutive relationship between

stress and strain. Further it was felt that an understanding of the rates of

interaction between the individual Reynolds stresses, not forced by a consti-

tutive relationship, would lead tca more general model for three-dimensional

flows and, perhaps, ould provide guidance for improving the form of the sim-

pler model and defi_ the flow conditions for its validity.



Two-Equation Model

The two-equatlon eddy diffusivity model proposed herein is a direct

extension of the Wilcox-Traci model of reference 6. The differences occur

within the production terms of the kinetic energy and specific dissipation

rate equations 2 and in the constitutive relationship between the Reynolds

stresses and the mean rates of strain and vorticity. For the reasons cited in

the Introduction, the production term in the kinetic energy equation is

retained as the sum of the products of the local Reynolds stress times the

appropriate mean velocity gradient, equation (i). The analogous term of the

specific dissipation rate equation expressed in _2 is modeled as the product

of the production term of the kinetic energy equation, the ratio _2/e and a

new modeling coefficient. This approach is in keeping with the customary way

of arriving at the individual terms for the second equation in two-equation

models. Other than the production terms and the choice of density scaling for

_, the model equations are virtually identical to those of Wilcox-Traci

(ref. 6). The definition of the eddy diffusivity is

g=y*_
w (12)

where the turbulence kinetic enorgy and specific energy dissipation rate are

given by the turbulence modeling equations:

and

_U.

_-_ (0e) +_xj (0uje) : 0_ij _xj _ + o*pe) 3e

_-_ (0_2) + _ (Ouj _2) : Y -e- OTij _xj + 20 \_Xk I J _3

[<" +  xjj

(13)

(14)

_ere the length scale is represented by

ei/2
(15)

The modeling closure coefficients employed are as follows:

2These equations differ from what has become the classical two-equation

model of turbulence (ref. i0) in that the authors interpret e as a "mixing"

energy more akin to 9/4 _,2 than to the total turbulence kinetic energy in a

boundary layer, and further, feel that _, the rate of dissipation of kinetic

energy per _n_t of kinetic enePgy, may be a more signifl_ant quantity than the

rate of turbulence dissipation itself.
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y* = [i- (i- %2)exp(-ReT/Re)]

yy* = yoo[l - (i - 12)exp(-ReT/R )]
i0 i

Y_ --ii ' Re--, _ = = i , R =2

(16)

The Reynolds number of turbulence is given by

ei/2£

ReT = (17)

The boundsry conditions appropriate to these modeling equations when applied

to boundary layers have been guided by asymptotic analysis and reference to

other models. The surface boundary conditions for equations (13) and (14) are

as fellows:

At x 2 = 0

e=0

20_ w
60 -+ --

_X22

for smooth impervious wall

or

60 ->

S U_ 2

_ Vw
for a rough and/or porous wall

where

S-I = S_ I + S_ I ; and
=/36 2 /8__ I12

SR \k$] +kk+]

6

SB= +(v i + v+j_
W W

(See ref. 6 for details of the porous or rough wall formulation.)

(18)

At x2 = 6

e = _Ue2(Xl)

(19)

= 0.09 B*i/46(xl)

As discussed in reference 6, the quantity _/_,I/4 behaves much like the clas-

sical mixing length. With this understanding, the proportionality coefficient

of 0.09 ill equations (19) is readily seen to be consistent with the Escudier

(ref. ii) eddy-viscosity mode] for boundary layers.



To model Reynolds stresses that do not necessarily align with the mean

rates ef strain, the constitutive relationship relating these quantities was

expanded to

Tij = -3 e_ij + 2e ij i _Uk ) 8 e
3 _xk _ij + 9 (_,_2 + 2SmnSnm)

(Sim_mj + Sjm_mi)

(20)

where the third term on the right was absent in the Wilcox-Traci model. The

vorticity tensor used here is defined as

i (_ui _uj)
_ij - 2 _xx- _x i (21)

J

The form of equation (20) was guided to some extent by Saffman's constitu-

tive relationship, derived in reference 9, where the Reynolds stress is

expressed in a tensor series to quadratic terms in the mean rates of strain

and the vorticity

2 2Ae Be Ce

Tij = -_ e6ij +- Sij S i• _ w2 _6ij _2 SikSjk

_ De (Sj + S k) Fe_2 k_ik ik_j - _ f_k_ij

Ge

w 2 _ik_jk (22)

where A, B, C, D, F, and G are modeling coefficients. Note that equa-

tion (22) applies to incompressible flows. In the current work, Saffman's

distinction between equilibrium and nonequilibrium kinetic energy is dropped,

and this has consequences in the evaluation of the modeling coefficients A

through G. The quantity e in equation (22) is identified here with the

kinetic energy of the modeling equation (eq. (13)).

Equation (22) can be sin:plified by requiring it to conform with certain

funaamental experimental observations. The experiment of Tucker and Reynolds

(ref. 12) where a homogeneous, nearly isotropic turbulence field is distorted

by mean normal strains, indicates that under the normal straining

u I = _x I , u? = -_x 2 , and u3 = 0 (23)

the normal Reynolds stresses are related approximately as

i
(24)

If the conditions represented by equations (23) and (24) are introduced into

equation (22), it is found that C = 0 is necessary. In addition, in refer-

ence 13, it was found that a field of homogeneous turbulence in rigid body

rotation decays without developing an isotropy. This observation requires

G = 0.



If equation (22), with C = 0 and G= O, is applied to a shear layer
where the only velocity gradient that exists Js _Ul/_X2, it is found that
equation (24) again applies and that B + F = 0 is required to assure that
the magnitude of the trace of the no_nnalReynolds stresses is equal to twice
the kinetic energy. With these values for the coefficients, the Saffman for-
mulation equation (22) reduces to

2 e_ + 2Ae Sij + De Be _ _._)6ij_ij = -3 ij _ _ (SJk_ki + Sik_kj) - _ (S_% (25)

It should be noted that in a shear layer or in a boundary layer, the last tern_
of equation (25), containing the factor B, is negligibly small. As the
authors' interest is primarily in such shear flows, the term containing B
was dropped in the development of equation (20). Equations (25) and (20)
differ in other respects. The term S S that appears in equation (20) was_ranmrl
necessary in the computations to avoid sign difficulties at the outer edge of
the boundary layers where the values of the normal Reynolds stresses are rela-
tively small. The term _Uk/_Xk was introduced to account for compressibil-
ity and to force the trace of the second term on the right in equation (20) to
vanish. The coefficient A was identified with the y* in equation (12).
Finally, the quantities B* and 8/9 were introduced in the last term to
satisfy someboundary-layer needs. Thesecan be seen by writing equation (20)
for the logarithmic region of a flat plate boundary layer in incompressible
flow. There the only meanvelocity gradient of consequenceis _Ul/_X2 so
that

1 _ul 1 _Ul (26)
S12= 2 _x2 ' $21 = 2 _x2

with the rest of the components of the rate of strain tensor being orders of

magnitude smaller. Similarly, the only components of vorticity of importance

are

1 3ul 1 _Ul
= (27)

_i2 2 _x 2 ' _21 = 2 _x 2

With equations (26) and (2z), TI2 from equation (20) can be written a_

_ul ._, e _ul (28)
T12 = _ _x 2 _ _x 2

In this region of the boundary layer, a balance exists between the production

and dissipation of turbulence kinetic energy in equation (13), thus

_u I
= 8*p_e (29)

PTI2 _x 2

which leads directly to

(30)



then y* is set equal to unity because of the high turbulence Reynolds number

in the logarithmic region of the boundary layer (refer to eqs. (16)). The

normal components of the Reynolds stress tensor in the logarithmic region
become

T22 = -e - _ = -e

• e( l :461

(31)

and are in the ratio

TII:T22:T33 = 4:2:3

Also, in this region of a flat plate boundary layer

_12 _ Tw (32)

so that equations (29) and (30) combine to indicate

-r /p
W

e = _ (33)
8,1/2

In parallel to these equations, the Reynolds heat flux vectors are repre-
sented as

qj = Pr T 3x Pr T _ 3xj
(34)

where FrT, the turbulent Prandtl number, is usually assigned a value of about

0.9. Comparisons of these modeling conditions with several sets of boundar} ....

layer data are given in later sections of this report.

Reynolds-Stress Model

The Reynolds stress formulation presented herein is a straightforward

extension of the model developed in reference 2. For -,mpleteness, discussion

in this section reviews some of the material presented in reference 2, partic-

ularly that pertaining to closure approximations. The key t|,eoretlcal advan-

tages for using the Reynolds stress model over the usual eddy viscosity model

lie in removing the postulates that the principal axis of the Reynolds stress

tensor align with that of the mean strain-rate tensor and that sudden changes

in the mean strain tensor are reflected immediately in the Reynolds stress.

In terms of mass-averaged dependent variables, the Reynolds stcess ecuatio_ or

RSE model is expressed in terms of components of Reynolds stress as



r _ ,

3 3 2

3-_ (PTij) +_x k (PUkXij) = -PTim 3uj_ 3u i
3x m PTjm _ + _ B*po_e_ij - X*p(o

( 2 e6ij) (_jmSmi S 2 nmSnm6ij )x _ij + 3 + p + Tim mj - 3 T

+_-pe ij 3 _xk 6ij +7_xk _ +°*p_) _xkj

(35)

The components of the Reynolds heat flux are modeled with

(oqi) + _ _h _u__!i_
3-_ _ (pujqi) = P_ij _x. PqJ _xj B**P_qi

3

+ _ + 3xj J

The specific dissipation rate is given, again, by

3 (p_2) + 3 _ _2 3u i ( 31

3--t 3x--_ (puJ m_) = ¥ 7 Pzij 3xj B + 2J \3-_Xk/JO__

(36)

(37)

where

e

1
e "- -_ Xii

I = _[ 2SmnSnm

(38)

The modeling coefficients are:

3
B= 20 ,

9 9 1

IO0 ' 25 ' 2 '

),* = )_ [I- (i- A?)exp(-ReT/Re)] -I

_y_ :-. __Y°°[ (_ReT/R_)]L* L*_ 1 - (1- ._?)exp

]A* ,, - _-exp(-5_() B*

13 ].
"_'_= II ' \ 14 ' R e " 1 ,

,_** = 2

R --3
_0

(39)

I0



Again, the Reynolds number of turbulence, ReT, is given by equations (15)

and (i7). At a solid surface, equations (18) again apply and, in addition,

at x 2 = 0

qj = 0
(40)

_ij = 0

At a boundary-layer edge, in addition to equations (19), it is required that

at x2 = 6

qj = 0

2 Ue2(Xl)_ij J_ij = _ t (41)

where the latter assumes isotropic free-stream tul alence.

To explain the closure approximations employed, attention is first focused

on the heat flux equation (eq. (36)), and the specific dlssipation-rate equa-

tion (eq. (37)). The first two terms on the right side of equation (36) are

the exact heat flux production terms. The next term is the modeled dissipa-

tion, while the last term is the modeled turbulent diffusion. It is assumed

that the dissipa:ion of the heat flux is proportional to the heat flux vector

and that the turbulent diffuslon of the heat flux is a simple gradient diffu-

sion process. For the specific dissipation rate equation, the only difference

between equation (37) and that used for the two-equatlon model (eq. (14)), is

in the form of the coefflcient ¥. An explanation of these differences is

given iD the section entitled "Near Wall Viscous Modifications. '_

In the Reynolds stress equations, the first two terms on the right-hand

side are the exact, unmodeled production terms. The third term is the modeled

dissipation. The next three terms model the correlation of the pressure and
rate of strain fluctuations. The final term is the sum of the exact molecular

diffusion and modeled turbulent diffusion of the Reynolds stress.

It is illuminating to compare those modeled terms with other models. For

incompressible flow, the correlation of fluctuations in the pressure ana rate

strain, _ij, namely,

has been modeled by Launder, Reese, and Rcdi (ref. 14) with the rather complete

form

+2 2 2 ,

where C I, _, _, and I are the Launder et a!. closure coefficients, and

(43)

ii



8uj _u i

Pij = Xik 3--xk + Tjk 3xk

3u k 3u k

Dij = Tik 3xj + rJ k

i i = S
P = 2 Pii = 2 Dii Xmn nm

(44)

The first of the terms on the right of equation (43) is the Rotta "ten-

dency toward isotropy" term (ref. 15), involving the departure from isotropy of

the normal Reynolds stresses. The remaining terms represent the interaction

between the Reynolds stresses and the mean flow. _daile some of the elements

in these terms (refer to equations (44)), are similar to the unmodeled produc-

tion terms, the terms are structured to vanish when the trace of _ij is
taken, as would be required by continuity for an incompressible fluid within

equation (_2). The relationship of these terms to production and dissipation

of tbe Reynclds stresses can be demonstrated most directly by introducing the

mean rate of strain and vorticity tensors (eqs. (8) and (21)), respectively.

For example, the exact production terms in equation (35) can then be rewritten
as

_uj 3u i

rim 3xm + rjm 3x--_= (TjmSmi + TimSmj ) + (Xjm_mi + _imgmj )
(45)

(total production)
(production due

to straining)

(production due

to rotation)

If the strain and vorticity tensors are introduced into equation (43), and

this general pressure strain correlation is introduced into equation (35),

there results for incompressible flow

Dr ij

Dt (ZimSmj + rjmSmi)(-i + _ + _) - (_imgnnj + Zjm_mi)(-i + a - 8)

- (_t + _) _ _SijP + 8*_e _iJ - CI +-3- 6ij

I ?_i ..
__J

+ yeSij + 3_ k (\, + o*_) JXk
(46)

Fhis form of the Reynolds stress equations is equivalent to that given in

reference !6, but tile coefficients used in each case have slightly different

definitions which causes some apparent sign differences.

From equation (46) it is seen that the pressure rate of strain correlation

terms, identified Dy the modeling constants C_, a, and _, behave in parallel

with the production and dissipation terms; the a and _ complement the factor

-i in the first two production terms resulting from strain and rotation, and

part of C I can be considered to account for some anisotroplc dlssipation.

When equation (46) is applied to a flow with uniform shearing strain, where

12



1 8Ul =$12 = 2 8x2 $21

J1 8Ul

_12 = 2 8x2 -_21

are the only nonzero elements of the strain and vortlcity tensors and when

convection and diffusion are neglected, there results

T11 2 -_ + 41- 2_

e 3 3C I

_22 2 2 - 28 + 4g

e 3 3C 1

and

(47)

(48)

(49)

r33 2 2 - 2_ - 28

e 3 3C 1
(50)

The corresponding shearing stress is

_12 /(_ - 1)(T22/e) + _(tll/e) + (y/2)

= V Cl
(51)

Because equations (48) through (50) are not independent, these equations,

together with equation (51), cannot in themselves be used with specified

values of the normal and shear Reynolds stresses to define the four constants

_, 8, 7, and CI. Launder et al. (ref. 14) avoided this difficulty by follow-

ing Rotta's (ref. 15) suggestion regarding tensor symmetries of the pressure

strain terms and found that u, _, _ could each be expressed in terms of a

pair of constants, C I and C2. They then employed experimental data of the

normal Reynolds stresses in nearly homogeneous shear flows to define C I and

Cp through equations equivalent to equations (48) through (50). The approach

in the present analysis is to require consistency between equations (48)

through (51) with equations (31), (32), and (33). In _idltlon, it is necessary

to introduce the assumption that rotation alone does not cause a redistribution

of the Reynolds stress. This assumption is consistent with the a_gument that

eliminated the last term of equation (22). The Reynolds stress model of the

present analysis, therefore, has been forced to be consistent with the previ-

ously developed two-equation model, where the normal stresses in the logarith-

mic region of the boundary layer were set in the ratio _II:T22:T33 = 4:2:3.

The values of _, B, 7, and C I resulting from this model are given in table 1

along with the values used by L_under et al. (not including special near-wall
effects).
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TABLEi.- COMPARISONOFCLOSURECOEFFICIENTSIN REYNOLDSSTRESSMODELS

Model

Present study
Launder, Reese, and Rodi

Coeff icient

I

4.5 0.5 I 0.5
i

1.5 IL_.76 .Ii
i

1.33

.36

The values of the Reynolds stress components in the logarithmic region of

a flat plate boundary layer utilized in the present model are compared to the

corresponding values of the model o_ reference 14 in table 2.

TABLE 2.- REYNOLDS STRESS COMPONENTS IN THE LOGARITHMIC REGION

OF A FLAT PLATE BOUNDARY LAYER

Model
Reynolds stress component

Tll/e T22/e T33/e T12/e

Present study -0.89 -0.44 -0.66 0.31

Launder, Reese, and Rodi - .93 - .46 - .61 I .35
i

A comparison of these tables reveals that similar values of Reynolds

stress components can be achieved in a nearly homogeneous shear layer or in the

logarithmic region of a boundary layer with rather disparate sets of modeling

coefficients based on different physical arguments. For example, the physical

assumption that mean flow rotation has no effect on the redistribution of the

Reynolds stresses force _ = _, and the consequence of this is felt in all the

other coefficients. One result is that the present model places greater empha-

sis on the Rotta term, through the larger CI, than does the Launder model.

Obviously, these models must be tested against data in flows that are differ-

ent from a nearly homogeneous shear layer to determine which model has the

better universal character. It is interesting to note that, in terms of the

symbols used in the present model, C! = I*/8". With these modeling constants
it can be shown that in a uniform shear flow

2 _ aul
TI2 = -- 98* _ ax (52)

Equation (52) is equivalent to an eddy dlffusivity formulation and provides a

justification for the use of such a concept in nearly uniform shear layers.

It is interesting, however, thag the "eddy dlffusivity" is proportional to

T22 rather than to e as in the two-equatlon model. This difference proves
extremely important for flows over curved surfaces (ref. 17) and is exploited

in a later section of this report.
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APPLICATIONTOTURBULENTFLOWSWITHPIANESTRAINANDUNIFORMSHEAR

In the first series of tests of the two revised models, consideration is

given to the distortion of high Reynolds number (Re T >> i) grid turbulence

caused by an application of plane strain and uniform shear. These cases act

as tests of the models where near-wall viscous effects are unimportant• For

these flows the velocity gradient tensor simplifies to

_ui_- C_ _ 0 1axj 0 Ef 0
0 0 -(i + f)_

(53)

where _ and _ are the axial strain rate and shearing rate, respectively.

The ii cases considered are indicated in table 3.

TABLE 3.- PLANE STRAIN AND UNIFORM SHEAR TEST CASES

Reference _(sec -I ) _(sec -I ) f 8_o tma x
L

0.0 21.5Tucker-Reynolds (ref. 12)

Reynolds-Tucker (ref. 18)

4.45

4.80

14. O0

12.00

3.25

0

0

0

-112

1

Townsend (ref. 19)

Marechal (ref. 20)

Uberoi (ref. 21)

Champagne-Harris-Corrsin

(ref. 22)

9.41

19.00

7.62

18.20

32.50

0.00
_V

12.9

0

0

-1/2

-1/2

-1/2

0

70.00

60.00

13.5

0.400

.220

.135

•145

.255

.150

•135

• 180

.120

• 086

• 176

The assumption that the turbulence is homogeneous in a coordinate system

that moves with the fluid volume, leads to the expression of the two-equation

model in the following simple form:

de 'v') 2) (i + f) (v'2) f (u'2)]_} 8*we
d--{" {(-u _ + [(w' - - - (54)

dua2 u_2 (<-u'v') _ + [<w'2) (I + f) - (v'2) f - <u'2)]_} - _3
dt " _ e (55)
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where

<-u'v')
= -- (56)e w

(u' 2) 2
e 3

2 _ + _ (_I_)2

co 96* i + X2
(57)

(V'2) = 2 _ 2 £--f 4 (_/_)2 (58)
e 3 _:, 9L_* 1 + X2

(w'2> 2 [

e = 3 + 2 -- (1 + f) (59)

and

X2 4([/,)" (1 + f + fz) + (_/_)2
;, (60)

Note that in writing equations (54) to (60) the turbulent Reynolds number is

assumed very large so that viscous effects are ignored. The RSE model simpli-

fies in a similar manner, although the equations are more lengthy; for brevity

the simplified RSE model equations are not presented.

The computations of the ordinary differential equations have been per-

formed with a fourth-order Runge-Kutta integration o_,,_,,,_^_..... _ initiate Lhe

computations, a value for the dissipation rate, _, is needed at t = 0. For

the Tucker-Reynolds experiment, the initial value of _ has been determined

from the measured variation of e upstream of the straining region. That is,

in the absence of strain, e is given by

e = [i + i )]-6/5eref 2- 8_ref (t - tre f (61)

where subscript ref denotes reference conditions.

of e with t = x/U, the value of _ref and hence
has been determined to be

From the known variation

at the initial station

6_o = 21.5 sec-1 (62)

To set B_o for the other flows, we have used values similar to those used by

Saffman (ref. 9) but with slight differences.

Of the eleven cases considered, the Tucker-Reynolds (ref. 12), Champagne-

IIarris-Corrsin (ref. 22), and Townsend (ref. 19) experiments are the most com-

pletely documented. Hence, we first focus on these three cases.

Tucker-Reynolds Plane Strain Flow

Figure 1 compares the computed arid measured distortion parameter, K, for

the Tucker-Reynolds plane strain flow; by definition
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(w'2) - (u'2>
K - (63)

(w'2> + <u'2>

As shown, good agreement has been obtained between computed and measured values

of K when the RSE model is used. Note that the postulated variation of _

with the strain parameter X (see eqs. (39)), viz,

A_ = - _ exp(-5×) _* (64)

is needed to insure the proper relaxation of the anisotropy after the strain

is removed. Although a less rapid variation of %_ with × is acceptable

for this flow, equation (64) has been found most suitable overall for all the

flows considered. Figure 2 shows how close the RSE model predicted normal

Reynolds stresses are to the corresponding measured stresses when the initially

anisotropic character of the flow is accounted for.

Results obtained using the two-equation model are not in as close agree-

ment with the data. At the onset and termination of strain, discontinuous

jumps in the stresses occur. For example, when the strain is removed, the two-

equation model unrealistically predicts an instantaneous return to isotropy.

Also, the predicted value of K at the end of the straining region is only

0.39 compared to the corresponding measured value of between 0.55 and 0.65.

As a numerical experiment, the two-equation model computation was contin-

ued much farther downstream without removing the strain. The asymptotic value

of the distortion parameter is 0.55, a value nearly identical to that predicted

by the RSE model. Additionally, it was found that when the Saffman production

terms are used the asymptotic value is 0.675. With either type of production

term, the asymptotic value is not achieved until about x = 7.6 m. The

results of this numerical experiment and the fact that the two-equation model

predicts an abrupt return to isotropy when the strain is removed illustrate

the fact that even with the new constitutive relation (eq. (20)), the two-

equation eddy viscosiJ_ model is timited to near-equilibrium flow conditions.

Champagne-Harris_Corrsin Uniform Shear Flow

Figure 3 compares computed and measured Reynolds stresses for the Cham-

pagne, Harris, and Corrsin uniform shear flow. The entire region of develop-

ing flow is c=nsidered, not merely the asymptotic values. As shown, the RSE

mode] predicted stresses that are in relatively close agreement with the data.

At x = 3.2 m the computed shape parameter, <-u'v'>//<u'2)(v'2>, of 0.47 is

2% lower than the measured value. The only noticeable disagreement occurs

between computed and measured values for (w'2>; the model predicts that as the

flow approaches equilibrium,

<w'2>. 2

e = _ (65)

while the data indicate a ratio of 0.574, somewhat closer to values used by

Launder, Reese, and Rodl (see table 2). This is a consequence of the fact

that the model predicts that in equilibrium the normal stresses lle in the

ratio
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<U,2>:(V,2>:<W,2> = 4:2:3 (66)

while the data indicate

(u'2>:(v'2>:<w'2> ffi4:2:2.4 (67)

As with the Tucker-Reynolds computation, the two-equation model predicts a

slower approach to equilibrium than does the RSE model and the data. Again, it

is instructive to examine the asymptotic solution for the two-equation model

with the conventionai and with the Saffman production terms. We find the

following:

_-u'v') [0.48, conventional production

+ I (68)_U'2)<v '2) 0.76, Saffman production

and

<u'2>:(v'2>:<w'2> + 14:2:3, conventional production

|4 :1.5:3, Saffman prJduction

(69)

Compared with equation (67), equation (69) provides another argument against

using the Saffman production terms. On the one hand, using the Saffman pro-

duction terms yields a normal stress ratio of 4:2:3 for a flat plate boundary

layer (FPBL). This ratio occurs because the turbulent mixing energy produc-

tion and dissipation terms balance. However, for the Champagne, Harris, and

Corrsin flow the balance occurs in the m equation rather than the e equa-

tion when the Saffman terms are used; consequently the normal stress ratio is

distorted. On the other hand, using the conventional production terms leads

to a production-dissipation balance in the e equation both for the Champagne,

Harris, and Corrsin flow and for flat plate boundary-layer flow. Since the

RSE model and the Champagne et al. data also indicate that turbulent energy

production and dissipation balance, using conventional production terms

appears to yield a more suitable physical representation for uniform shear

flow.

Townsend Plane Strain Flow

Figure 4 compares the computed and measured distortion parameters for

Townsend's (ref. 19) plane strain flow. Again, reasonably close agreement

between RSE computed and measured values of K have been obtained. With the

two-equation model, predicted values of K are about 25% lower than measured.

Other Plane Strain Flows

FJgure 5 presents a summary of computed and measured distortion parameters

for the ten plane strain flows listed in table 3. Only RSE model predictions

are shown in the figure. As shown, the predicted values of K at t = tma x

(the time corresponding to the farthest do%_stream station) lie within 20% of
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corresponding measuredvalues (see table 3)_ The two-equation model generally
predicts values of K which are about 70%of measured. The agreementwith
data of long-time asymptotic values is muchbetter, further illustrating the
fact that the two-equation model fails to accJrately describe the rate of
approach to equilibrium.

NEAR-WALLVISCOUSMODIFICATIONS

The conservation and turbulence model equations presented earlier con-
tained terms involving the molecular viscosity of the fluid in order to permit
boundary-layer computations with integration through the viscous sublayer and
no-sllp boundary conditions. In this way, use of artificial boundary condi-
tions such as the "law of the wall" can be avoided ard the uncertainties of
such boundary conditions far from flat plate boundary-layer conditions can be
eliminated. For the meanconservation equations it is sufficient to include
molecular viscosity in the diffusion terms. Similarly, the use of molecular
diffusion in the various model equations permits imposition of the no-slip
condition on the Reynolds stress and turbulent heat flux _s well as on the
meanvelocity, that is,

ui = qi = rij = 0 at y = 0 (70)

However, without further modification it was found by using the sublayer pro-
gramdeveloped by Wilcox and Traci (ref. 6) that the smooth-wall value of the
constant in the law of the wall, C, defined by

(u_y/,_)__° K

is approximately 7.0 and 7.5 for the two-equation and RSEmodels, respectively.
As these values differ from the commonlyaccepted value of C between 5.0 and
5.5, further viscous modifications were indicated. Wilcox and Traci (ref. 6)
have shownthat a proper level of C could be achieved by introducing viscous
dampingof the production terms in the e and m equation. This result can be
accomplished in the present models by damping the Reynolds shear stress, which
is implementedin the revised two-equation model by writing

y*eE = (72)

where

y* = 1 - (I - 12)exp(-ReT/Re) (73)

To allow a different rate of dampingof the _ equation production term, we
also write

_y* = ¥_[I - (I -\2)exp(-ReT/R_)] (74)
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where y_ = 10/9 is the high Reynolds number value of _. The closure coeffi-

cients _, R e and Rw are similar to those introduced by Wilcox and Traci

(ref. 6).

For the Reynolds stress model, the Reynolds stress itself is _amped by

increasing I* as follows:

I* = I_[i - (i - 12)exp(-ReT/Re)]-I (75)

while ] is modified according to

Y_ 12
1" = _ [i - (i - )exp(-ReT/R_) ] (]6)

where three closure coefficients I, Re, and R w again appear. To set the

value of I, we demand that in a Blasius boundary layer the models predict

that turbulent fluctuations are damped for Reynolds numbers below the linear-

stability theory, minimum-critical Reynolds number, Re c = 9xlO _. Turbulent

fluctuations are damped provided turbulent energ} production • _u/_y is less

than dissipation, B'we. This condition is satisfied throughout the boundary

layer up to a plate-length Reynolds number Re_, given by

7_0 , two-equation model

Re_ = (77)

456 , RSE model
12 (i - _2/3)

Requiring Re_ = Re c yields the following values for I:

i = { _i ' two-equatiOnmodel model
i , RSE

(78)

Following Wilcox and Traci, sublayer solutions have been obtained to determine

loci of values (Re, Rw) which yield a smooth-wall value for C of 5.5. As

shown in figure 6, such a locus exists for each model. To select the optimum

(Re, R_) pair, the turbulent energy balance between production and dissipation

has been compared with Laufer's (ref. 23) sublayer data (fig. 7]. Closest

agreement with the data 3 is obtained by using

and

Re = 1 ; both models (79)

2 ; two-equation model
= (80)

Rw 3 ; RSE model

3To further validate the choices for Re and Rw, a few flat plate

boundary-layer transition predictions have been made. Transition location and

width are roughly the same as predicted with the Wilcox-Traci model. Although

further testing will be needed, it appears that the two revised models probably

predict transition as well as the Wilcox-Traci model and that transition modi-

fications devised by Wilcox (ref. 24) apply to both of these models.
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EQUILIBRIUM BOUNDARY-LAYER APPLICATIONS

In these applications, the turbulence models are used to compute three

well documented near-equilibrium boundary layers under incompressible flow

conditions. The models are then applied to a compressible, flat plate boundary

layer. Then, an example of a compressible boundary layer is computed to demon-

strate the effects of relatively strong adverse and favorable pressure gradi-

ents. These computatioils are compared with both surface and profile data.

Incompressible Flows

To provide definitive tests of the revised models, flows were selected

(table 4) which include experimental data for all of the Reynolds stress com-

ponents. Of the three cases, the low Reynolds number of the Andersen adverse-

pressure gradient case provides the most rigorous test of the models' ability

to simulate viscous effects.

TABLE 4.- BOUNDARf-LAYER EXPERIMENTS USED TO ASSESS THE TURBULENCE MGDELS

Flow Data sources

Flat plate boundary layer

Bradshaw adverse pressure gradient

Andersen adverse pressure gradient

Karman-Schoenharr (ref. 25)

skin-friction correlation;

Klebanoff (ref. 26) data;

Wieghardt (ref. 27) data.

Bradshaw (ref. 28) data;

Coles (ref. 27) version of

Bradshaw data.

Andersen (ref. 29) data.

Figures 8 to i0 compare computed and measured skin friction, cf, and shape

factor, H, along the three equilibrium boundary layers. Over these three

experiments, both models predict values of skin friction that are generally

within 5% of the data on both the flat plate and in adverse pressure gradients.

The predictions are lower than the data, with the RSE model yielding slightly

lower values than the two-equation model. The computed shape factors are

within 3% of the measured values for the two-equation model and within 5% when

the RSE model is used.

The predicted velocity profiles for both models are compared with the

data of the three experiments in figures ii to 13. In figure ii (the flat

plate boundary layer), the computations show a slightly thinner boundary layer

than given by the data, with the larger differences occurring at the low Reyn-

olds nu,nber. Ge_erally, the values of u+ are within 5% of the measured

values For the test cases with adverse pressure gradients, the computations

yield velocity profiles that are ge_lerally less full than the data, but within

20% of the _ _perimental values of u+ even for the poorest comparisons (with
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the origlnal Bradshawdata or Anderson's 1.8 m station), in these figures,
there is little choice between the two-equation and Reynolds stress models.

The computedand measuredReynolds stresses are comparedin figures 14
to 16, where the meanvelocity profiles are also displayed as u/Ue versus
y/_. For all three flows, both models predict all four Reynolds stresses to
within 10%of the measuredvalres, except in the regions closest to the sur-
face. This is not surprising w_lenit is recalled that the modeling coeffi-
cients were based on arguments that in the law of the wall region both the
turbulent shear and kinetic energy are constant with y (refer to eq. (32)
and (33) or eq. (51)), whereas the data actually showvariations of about 30%
in e. Changesvery close to the surface in the current model, along the lines
taken by Launder et al. (ref. 14), possibly would imFrove this situation. It
is reassuring, however, that the normal stress compoaentmost accurately pre-
dicted is <v'2>or T22, and in view of equation (52) explains why the shear
stress in the present model is predicted rather accurately even though e is
not. In the normalized meanvelocity profiles, the RSEmodel velocity profiles
appear to have suffered more deceleration than those of the two-equation model.
Onbalance, the two-equation model showsslightly closer agreementwith the
boundary-layer data than does the RSEmodel.

Compressible Flow

The turbulence models presented here were extended to compressible flow
through the assumption that the effects of compressibility can b= introduced
primarily by use of the Favre mass-weighted dependent variables (ref. 30) in
both the conservatien and moaeling equations. _%enWilcox and Alber (ref. 4)
first utilized the Favre variables they noted a,_4_Ltiona]terms entered the
modeling equations that were explicitly depee_ent on t!_e compressibility of
the fluid. Also, they suggested that the dissipation _ate would require some
scaling on density to assure pruper representatio_ _, _ne compressible terms.
Later, Rubesin (ref. 31) analyzed howthe addicio _i compressibility terms in

the kinetic energy col_!i 5e further modeled. Exp.rienee with the latter model

(ref. 32), however, showed that reasonable comparison with data could be

achieved if these supplemental terms were ignored, fnis, together with the

rather successful experience with the Wilcox-Traci two-equation model (ref. 7),

which also does not use these terms, led to t_le neglect of extra compressibil-

ity terms in the present model.

The scaling introduced by compressibility in the present model can be

illustrated by an analysis of tbe behavior of the two-equation model in the

near-wall region of compressible boundary layer _n a flat plate. Emphasis will

be placed on the "law-of-the-wall" region, wbere it is permissible to neglect

convection and molecular diffusion. The monlentum equation (eq. (4)) reduces

to

_u _ (81)
DE _ = OwU T

and the model equations simplify to
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-7

/au\2
(82)

and

0 = "Y -_ tpE_'-_'y,] - (3 + 20 p(_3 + o ay I (83)

In the logarithmic region of the boundary layer, the turbulence Reynolds

number is sufficiently high that

Also, in this region (ref. 33),

y*= 1 }i0

y--_-

(84)

_ YUmu___*= i _n --+ B (85)
U T K "OW

where

(86)

In this boundary-layer region, a balance exists between the production and dis-

sipation of the turbulence kinetic energy so that the diffusion term in equa-

tion (82) can also be neglected. Fro_ equations (12), (82), (85), and (86),

it follows that

u_B,1/2Ky (87)

From equation (81), vith equation (87), it is found that

D e =
(88)

Equations (87) and (88), therefore, represent the density scaling inherent in

the momentum and turbulence mixing e_ergy model equations. The scaling ques-

tion would be closed if the forms in the above equations would ale satisfy

the specific dissipation rate equation. When equations (85) through (88) are

substituted into equation (83) there results

0 = _(B,I/2 ( E_B*1/2 ) [2 (uT_ (,{e, T]]} .]+ + +O,Ue, +. (89)

Thus in the limit of the infinitely high Reynolds number ,_here ur/u e -, 0, the

last term vanishes and the usual incompressible flow luterrelationship between

the modeling coefficients results. Therefore, equation (83) is satisfied for

high Reynolds number, indicating that the density scaling represented by
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equations (87) and (88) satisfies both the modeling equations and the momentum

equation in the logarithmic region of a boundary layer. It is interesting

that in this boundary-layer region the length scale is

el/2
= = 6.I/4 _y (90)

and identical to that which exists in an incompressible flow.

Calculations of the boundary-layer skin friction on an adiabatic flat

plate at Mach numbers up to flve and for cooled wall conditions at a Math

number equal to five are compared with results from the van Dries_ II formulas

in figures 17 and 18. These formulas have been sho,cn (ref. 34) tc represent

the bulk of existing data under these conditions to about ±10%. The agreement

between the methods is excellent, but this is not surprising in view of the

similarity of the density scaling indicated by equations (87) and (88) and

that which is inherent in the van Driest formulas. What differences exist are

largely due to the density scaling differences inherent in the wake region of

the boundary layer. For these flat plate conditions, both the two-equation

and RSE models yield essentially the same results.

An example of a more severe test of the models for compressible flow is

the boundazy-layer experiment at a Math number of four conducted by Lewis,

Gran, and Kubota (ref. 35). In this experiment, an axisymmetric turbulent

boundary layer on the adiabatic interior wall of a circular cylinder was sub-

jected to an adverse pressure gradient followed by a favorable pressure gradi-

ent. These pressure gradients were achieved by means of a shaped centerbody.

The distribution of the surface pressure is shown in figure 19. A pressure

rise of nine times the upstream pressure was attained befor _ pressure relax-

ation occurred. For reference, the circled numbers along the abscissa desig-

nate stations at which profile data will be compareo in the figures that

follow. The experimental data are primarily boundary-layer surveys of impact

pressure and total temperature which are used to provide the mean velocity and

density profiles at a sequence of stations. Local skln-frictlon coefficients

were then obtained from Clauser plots of these data compared to equation (85).

Turbulent shear profiles through the boundary layer were found flom total

shear profiles evaluated from changes in the stream direction of the mean

momentum integrated from the eorface to a point within the boundary layer.

The error introduced by these methods permits assessment of the turbulence

models to about ±15%.

Figure 20 shows the aistrlbution of the surface skin-friction coefficient

within the test zone. The coefflclent shown is defined in terms of the

upstream boundary-layer edge conditions rather than the local conditions and

is therefore proportional to the surface shear. Along with the computed

results based on the models presented here, computations base] on the Marvin-

Sheaffer code (ref. 36), which has been extended to contain a classic mixing

length model essentially identical to that of Cebeci (tel. 37), are given for

comparison. The mixing length model fails to capture the full rise of the

skin frlctlo,l caused by the adveLse pressure gradient at the_e Math numbers.

On the other hand, it follows the data in the reglon of favorable pressure

gradient quite well. The second-order closure models demonstrate a much

24
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better prediction of the rise in skin friction in the adverse pressure gradient

region; in the following _avorable pressur_ gradient region, however, they show

somewhat too large a drop in the skin friction. The two second-order models

yield essentially equivalent results.

Figure 21 shows the distribution of the boundary-layer shape factor,

H = 6*/0, along the test zone. The second-order models yield results that are

close to the data. The results are generally better than those of the mixing

length model except for the region immediately downstream of the station where

the computations were initiated by matching the calculated and experimental

momel,tum thicknesses.

Figures 22 througb 27 show comparisons of the calculations based on the

different turbulence models with mean velocity and turbulent shear profile

data at t11e three stations designated in figure 19. Station I represents

essentially flat plate conditions; station 2 is near the end of a long run of

adverse pressure gradient; and station 3 is at the end of the favorable pres-

sure gradient region. All of the models well represent the velocity profile

at station i. If one were to be favored, it would be the mixing length model

which has been fine-tuned to represent equilibrium boundary layers. Figure 23

shows the turbulent shear profiles computed and measured at this station.

Near the wall, the mixing length model overpzedicts the shear by about i0%,

whereas the second-order models are about 10% lower than the measurements. In

the outer part of the boundary layer all the models yield results that are

about 15% of the peak shear higher than the data. When consideration is given

to the possible errors in the data, these comparisons are reasonably good and

demonstrate that the second-order models generally give results in a zero pres-

sure gradient as good as the fine-tuned mixing length model.

Figures 24 and 25 show the mean velocity and shear stress profiles at the

station at the end of the adverse pressure gradient region. The experimental

mean velocity data have become fuller in the vicinity of the surface, and the

thickness of the boundary layer has been reduced relative to the data at the

upstream station. All three models generally reflect this behavior, with the

two-equation model showing the near-surface behavior best. Surprisingly, the

RSE model does not show the near-wall fullness in the velocity profile even

though it provides the best representation of the three models for the skin

friction and local shear profile.

After the run of favorable pressure gradient, figure 26 shows the e_peri-

mental mean velocity profile fuller and thicker than at the previously indi-

cated station. All tile models represent the experimental data quite well,

with the second-order models showing a shade better agreement. The experi-

mental shear stress profile at this station is now about an order of magnitude

lower than the shear that existed at the previous station. Again the models

show this drop in shear, however the second-order mode]s overpredict the drop

in shear in tile inner part of the boundary layer. This is consistent with

their skin-frictlon values at this station.

For this example of the behavior of a compressible boundary layer experi-

encing both adverse and favorable pressure gradients, it is concluded that the
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second-order closure models, with modeling coefficients that are independent

of the pressure gradients, represent the experimental data better than a

mixlng-length model with pressure gradient dependent modeling. This conclu-

sion was also reached in references 38 and 39, where a broad range of compres-

sible turbulent boundary-layer experiments were compared with the two--eLuation

model for both attached and separated flows and with the RSE model for attached

flows.

ADVANCED BOUNDARY-LAYER APPLICATIONS

The models presented here have been compared with the results of boundary-

layer experiments designed to investigate special aspects of turbulence model-

ing. The effect of sudden application of transverse shear on the redistribu-

tion rate between the individual components of the Reynolds stress tensor was

studied experimentally in references 40 and 41 and compared with our models in

reference 42. The results of the comparison of the experimental data and the

computations based on the models showed small improvement over a simple mixing-

length model but still indicated a too-rapid rate of response to the transverse

shear. It appears that the success of the RSE model for normally strained

flows as indicated in figure i did not carry over as well to shearing strains.

Another application of the models has been to the problem of the effect

of longitudinal curvature on turbulent boundacy-layer behavior, the topic

first recognized by Bradshaw (ref. 43). The Reynolds-stress equations were

applied to this problem directly through conversion of the coordinates from

Cartesian to curvilinear with one axis tangent to the body, s, and the other

normal to the surface, n. The two-equation model, however, required a basic

reinterpretation of the meaning of the symbol e, the kinetic energy term used

earlier.

For flow over a streamwise curved surface with local radius _f curva-

ture R (convex, R > O; concave, R < O) the s,n curvilinear coordinate

system introduces centrifugal and coriolis acceleration terms in the instanta-

neous equations of motion. In turn, these acceleration terms give rise to

additional terms inversely proportional to R in the Reynolds stress equa-

tions. For a thin incompressible boundary layer these equations can be written

as

aTss aTss

u _ + v _n 2 (u = -2_ + B*_e - I*_ rss+ 2 RIsn sn_n

_)[SS]

_nn _nn

u ---f-_s"+ v an u =2 u +2 (_ 2) (au u)2 _ _sn _ _sn -_ 8*_e - _*_ nn + 3 e + _sn _n R

u_ [( e a_nn] (92)
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_Tzz
+V-- DTZZ 2 X,_o(l_zz _ -3 _an = -3 B*_e - 2 e) 2 Xsn(_n R)

DTzz I (93)

DTsn aXsn u (Tnn TSS) .... _,U)Tnsu _s + v _ + _ _ • - R (Tnn Xss ) - Tnn._n

+ {Tnn + Tss 2 e_[Sy u)

e aTsn]
(94)

In these equations, terms with common factors have not been combJ ted in

order to reveal the physical source of the individual terms, that is, produc-

tion, redistribution, etc. The sum of equations (91) through (93) yields the

kinetic energy equation

De De _ {_u
u -_s + v a-'n= "sniDn (95)

The specific dissipation rate equation is

_ V _ y I 3 + 2_ I _ _ + __ v + _ (96)

Equations (91) through (96) were introduced into a boundary-layer code,

and the results cbtained from this code for comparison with some experimental

data are given in the following figures. Before discussing these figures, how-

ever, it is interesting to examine the behavior of the Reynolds stress equa-

tions in the logarithmic region of the boundary layer where convection and dif-

fusion terms can be neglected. Note that for this examination centrifugal

forces are retained. Under these conditions,

a---U-U+3 u
2_

= :'-+ (97)
e 3 X* au u

Dn R

a.___u+3 _
(v___'l!= 2 B* an R (98)

e 3 _* _u u

an R

(w') 2 2
e - _ (99)
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! = 8" 8" 3n 3

e R/J
(i00)

For a negative value of R, a concave surface, equations (97) to (I00) show

that, relative to the kinetic energy, u' is decreased, v' is increased, w'

remains unchanged, and the shear stress x is increased. A convex surface

results in opposite behavior.

When equations (95) and (96) were utilized as the model equations for a

two-equation model in the boundary-layer equations appropriate to longitudi-

nally curved surfaces, it was found that the additional terms containing R

did not produce the known curvature effects. This deficiency was corrected by

exploiting the observations of the similar behavior of the shear stress and

v' in the Reynolds stress equation in order to reinterpret the meaning of e

for the two-equation model. As in references 1 and 17, e is thought of as a

"mixing energy" rather than a "kinetic energy" and is defined as

9

e = - _ _nn (i01)

With this definition for e and the forms of equations (92) and (95) as guid-

ance, the e equation "o_' _se w_th t;ze two-c_<_Jo_z mode_ o_zl_ is written, in

an a_ ;zoc manner, as

3e 3e 9 u /3u

u_7+vTffn+_ : _S_n - _B*e_+-_-ff(,_+ o'E) (lO2)

with

T -- C _n

where c is given by equation (12) and the specific dissipation rate equation

is equation (96). All the modeling coefficients and relationships employed in

the two-equation model used earlier are retained. The third term on the left

side of equation (102) represents the principal extra rate of strain intro-

duced by the longitudinal curvature.

These model corrections for the effect of longitudinal surface curvature

were tested against two boundary-layer flows experimentally measured by So and

blellor (ref. 44) over a convex surface. One flow was in a zero pressure gra--

dient, whereas the second boundary layer experienced an adverse pressure gra-

dient. Figures 28 through 33 compare the measured data with the computed

results. Figures 28 and 29 compare measured skin friction and form factors

with the computed results with and without accounting for the effect of longi-

tudinal surface curvature. The computed results were matched to the first sta-

tion by assuming the flow upstream of that station to be on a flat plate of a

length to yield the correct skin friction there. For the case ol the convex

wall with constartt pressure, the unmodified models show none of tt,e drop in
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skin friction experienced in the experiment. Except for their behavior imme-

diately after the first station where the radius of curvature is suddenly

introduced, the modified models give an excellent representation of the skin-

friction behavior on the convex surface. This is rather remarkable for the

two-equation model, when its ad hoc formulation is considered. Both modified

models also well represent the rise in the form factor experienced by the data.

For the case of the adverse pressure gradient (fig. 29) the unmodified models

again do not show an adequate drop in the skin friction, whereas the modified

models represent the skin-friction data quite well. The models with surface

curvature corrections also represent the shape factor data in the adverse pres-

sure gradient well.

In figures 30 and 31, the computations are compared with the mean stream-

wise velocity data in law-of-the-wall coordinates. The data correspond to the

stations farthest downstream where skin friction was measured for the zero and

adverse pressure gradient cases, respectively. The effect of the convex sur-

face is to enlarge the contribution of the wake portion of the boundary layer.

Both the RSE and two-equation models that account for the longitudinal curva-

ture capture this behavior rather well for both cases of surface pressure dis-

tribution. Again, the added rate of strain in the energy equation of the two-

equation model yields remarkably close agreement with the data -- even somewhat

better than the RSE model. Note that for the adverse pressure gradient flow

the large RSE model differences from measurements are mainly due to the models'

overpredicting cf at the station chosen for comparing theory and experiment.
Figures 32 and 33 pcovide a measure of how well each model predicts the various

Reynolds stresses. Generally speaking, the RSE model predicted stresses are

as far above the measured values as the two-equation model predicted stresses

are below measured values. Interestingly, while the near-wall values are more

closely simulated with the RSE model, the shapes are more closely simulated

with the two-equation model.

CONCLUDING REMARKS

The most significant result of the study is the observation that the two-

equation model is as accurate _ the RSE model for the class of boundary layers

considered. ?urthermore the new two-equation model constitutive relation per-

mits accurate prediction of all components of the Reynolds stress tensor.

The RSE model holds a distinct advantage over the two-equation mo4el for

turbulent flows which experience sudden changes in the strain rate and/or

shear. While the two-equation model accurately predicts equilibrium states,

the rate of approach to equillbr_um often is inaccurate. With the RSE model,

both the rate of approach to equilibrium and the equilibrium state are accu-

rately predicted.

Results obtained suggest two tentative conclusions. First, there appears

to be little advantage in using the RSE model rather than the two-equation

model for two-dlmenslonal attached boundary layers. Second, for separating
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flows and for flow subjected to abrupt changes in strain rate and/or shear,
the RSEmodel mayprove superior to the two-equatlon model.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, Calif., 94035, October 15, 1979
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for flow over a convex wall with constant pressure.
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